BAULKHAM HILLS HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2010

MATHEMATICS

EXTENSION 2

GENERAL INSTRUCTIONS:

- Reading time 5 minutes.
- Working time 3 hours.
- Write using blue or black pen.
- Start each question on a new page.
- Write your Student Number at the top of each page.
- Calculators may be used.
- A table of standard integrals is provided.
- **ALL** necessary working should be shown in every question.

QUESTION 1 (15 marks)	
	Mark

(a) Find each of the following integrals

(i)
$$\int x^2 (1+2x^3)^{-5} dx$$
 2

(ii)
$$\int tan^4 x dx$$
 3

(iii)
$$\int \frac{dx}{3+2\cos x}$$

(b) Find
$$\int \frac{e^x + e^{2x}}{1 + e^{2x}} dx$$
 3

(c) (i) Show that
$$sin(A + B) + sin(A - B) = 2sinAcosB$$
 1
(ii) Hence calculate $\int sin5xcos4xdx$ 2

QUESTION 2 (15 marks)

(a) For $z_1 = 2 - 3i$ and $z_2 =$		$z_1 = 2 - 3i$ and $z_2 = 1 + 5i$ find, in the form $a+ib$, the values of	
		(i) $z_1 + \overline{z}_2$	2
		(ii) $z_1 z_2$	2
		(iii) $\frac{z_1}{z_2}$	2
(b)	(i)	Solve $(x + iy)^2 = 6i$	2
	(ii)	Hence or otherwise solve $z^2 - (1 - i)z - 2i = 0$	3
(c)	(i)	Express $z = 1 - \sqrt{3}i$ in modulus-argument form	2
	(ii)	Hence express z^6 in the form $a + ib$	2

QUESTION 3 (15 marks)

(a)	The h	yperb	ola H has the equation $\frac{x^2}{4} - \frac{y^2}{12} = 1$	Marks
	Find	(i)	its eccentricity	2
		(ii)	the coordinates of its foci	1
		(iii)	the equations of its directrices	1
		(iv)	the equations of its asymptotes	1
(b)	(i) Sh po	ow th	hat the gradient of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the $(a \cos \theta, b \sin \theta)$ is $\frac{-b \cos \theta}{a \sin \theta}$	2
	(ii) He	ence s	how that the equation of the tangent is $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$	3
	(iii) S	how t	hat the x-intercept of this tangent is $(\frac{a}{\cos\theta}, 0)$	1
	(iv) H pa	ence, asses	or otherwise, find the points on the curve $4x^2 + 3y^2 = 12$ whose tangent through (2,0)	4

QUESTION 4 (15 marks)

(a)	OABC is a square on the Argand diagram and is labeled in an anticlockwise
	direction. A represents $z = a + ib$ and B represents $4 + 7i$.

(i)	Find, in terms of <i>a</i> and <i>b</i> , the complex number represented by C.	2
(ii)	Hence evaluate <i>a</i> and <i>b</i> .	2

(b) The equation $x^3 + 2x - 1 = 0$ has roots α, β and γ . Find the equation with roots:

(i)	$\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$		2
-----	---	--	---

(ii)
$$\alpha^2, \beta^2$$
 and γ^2 2

(c) (i) Show that 2 is a root of multiplicity 3 for $P(x) = x^4 - 3x^3 - 6x^2 + 28x - 24$ 2 (ii) Hence solve P(x) = 0 2

(d) Draw on separate argand diagrams the following loci:

(i)
$$z\bar{z} = 3$$

(ii)
$$\arg\left(\frac{z}{z-1}\right) = \frac{\pi}{3}$$
 2

QUESTION 5 (15 marks)

(a) Suppose
$$x > 0$$
, $y > 0$, $z > 0$

(i) Prove
$$x^2 + y^2 + z^2 \ge xy + yz + xz$$
 22

(ii) Given $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz)$ prove $x^3 + y^3 + z^3 \ge 3xyz$ 1

(iii) Hence show
$$a + b + c \ge 3(abc)^{\frac{1}{3}}$$
 1

(b) Given below is the graph of
$$f(x) = 2 - \frac{4}{x^2 + 1}$$
.
y
2
-1
-1
-2
y

Use the graph of y = f(x) to sketch, on separate axes, the graphs of

(i)
$$y = |f(x)|$$
 2

(ii)
$$y = [f(x)]^2$$
 2

(iii)
$$y^2 = f(x)$$
 2

$$(iv) \quad y = \frac{1}{f(x)}$$

For the curve $x^3 + 3x^2y - 2y^3 = 16$ (c)

(i) Show that
$$\frac{dy}{dx} = \frac{x^2 + 2xy}{2y^2 - x^2}$$
 1

2

Marks

QUESTION 6 (15 marks)

(a)	Find, using slices, the volume generated when the area bounded by $y = x^2$ and the line $y = 3$ is rotated about the line $y = 3$.			
(b)	Find, using cylindrical shells, the volume obtained by revolving about the y-axis the region bounded by the curve $y = sinx$, for $0 \le x \le \pi$, and the x-axis.			
(c)	A solid has a semi-circular base whose equation is $=\sqrt{4-x^2}$. Vertical cross- sections, perpendicular to the diameter, are right-angled triangles whose height is bounded by the parabola $z = 4 - x^2$.			
	(i) Draw a neat diagram, including a typical slice, representing this information.	1		
	(ii) By slicing at right angles to the x-axis, show that the volume of the solid is given by $\int_0^2 (4 - x^2)^{\frac{3}{2}} dx$.	3		
	(iii) Hence calculate this volume.	3		
QUES	STION 7 (15 marks) Use the method of partial fractions to show that $\int_0^1 \frac{6x+4}{(x^2+1)(x+1)} dx = \frac{5\pi}{4} - \frac{1}{2}\log_e 2$	Marks 4		
(b)	Let $P(z) = z^4 + bz^2 + d$ where b and d are real numbers and $d \neq 0$. $P(z)$ has a double zero α .			
	(i) Prove $P'(z)$ is odd.	2		
	(ii) Prove that $-\alpha$ is also a double zero of $P(z)$.	2		
(c)	A mass of 35 kg is dropped from a balloon falling at 30 m/s. The mass experiences air resistance measuring 70v Newtons, where v m/s is its velocity. Take g as 10m/s^2 .			
	(i) Show that the velocity of the mass <i>t</i> seconds after being dropped, but before hitting the ground, is given by $v = 5 + 25e^{-2t}$.	3		
	(ii) Describe what happens to the velocity as $t \to \infty$.	1		
	(iii) If the mass was dropped from 400m above the ground, how close to the ground will it be after 1 minute?	3		

QUESTION 8 (15 marks)

(a) Given
$$I_n = \int_0^1 x^n e^{-x} dx$$

(i) Calculate I_0
(ii) Prove $I_n = nI_{n-1} - \frac{1}{e}$
(iii) Hence find $\int_0^1 x^3 e^{-x} dx$
2

(b) Two particles of equal mass are attached to the ends A and B of a light inextensible string which passes through a small hole at the apex C of a hollow right circular cone fixed with its axis vertical and apex on top. The semi-vertical angle of the cone is
$$\theta$$
. The particle at A, where AC is *a* units, moves in a horizontal circle with constant angular velocity ω on the smooth surface of the cone, while the other particle at B hangs at rest inside the cone.

(ii) Show that
$$\omega^2 = \frac{g}{a(1+\cos\theta)}$$
 2

(iii) Hence, or otherwise, deduce that
$$\frac{g}{2\omega^2} < a < \frac{g}{\omega^2}$$
 2

(c) If
$$x > 0$$
, prove $x - \frac{1}{3}x^3 < \tan^{-1}x < x - \frac{1}{3}x^3 + \frac{1}{3}x^5$ 4

END OF EXAM

$$\begin{aligned} & (G_{2}(G_{2}(1)) & G_{2} = 2, f_{2} \\ & (G_{2} = 1, f_{2} = 1, f_{2} = 2, f_{2} \\ & (G_{2} = 1, f_{2} =$$

•

$$\begin{array}{c} g_{2}(a) (a (x + y)^{3} > 0 \ for all (x, y) \\ x + y^{2} \geq 2x + y \\ x + y^{2} \geq 2x + y \\ y^{2} + x^{2} \geq 2x + y^{2} \geq 2x \\ y^{2} + y^{2} + x^{2} \geq 2x + y + y + x + x \\ (a) \\ x^{2} + y^{3} + z^{2} - 5x + y^{2} \geq (x + y + y + x + x) \\ (a) \\ x^{2} + y^{3} + z^{2} - 5x + y^{2} \geq (x + y + y + x + x) \\ (a) \\ x^{2} + y^{3} + z^{2} - 5x + y^{2} \geq (x + y + y + x + x) \\ (b) \\ x^{2} + y^{2} + z^{3} \geq 3x + y^{2} \\ (c) \\ x^{2} + y^{2} + z^{3} \geq 3x + y^{2} \\ (c) \\ at \\ x^{2} + y^{2} + z^{3} \geq 3x + y^{2} \\ (c) \\ at \\ x^{2} + y^{2} + z^{3} \geq 3x + y^{2} \\ (c) \\ at \\ x^{2} + y^{3} + z^{2} \geq 3x + y^{2} \\ (c) \\ at \\ x^{2} + y^{3} + z^{3} \geq 3x + y^{2} \\ (c) \\ at \\ x^{2} + y^{3} + z^{3} \geq 3x + y^{2} \\ (c) \\ (c) \\ x^{3} + 3x^{2} - 2y^{3} = 16 \\ b \\ b \\ b \\ (c) \\ y^{2} + 1 + y^{3} = 0 \\ x^{2} + 2x + y = 0 \\ (c) \\ x^{2} + 2x + y = 0 \\ (c) \\ x^{2} + 2x + y = 0 \\ (c) \\ x^{2} + 2x + y = 0 \\ (c) \\ x^{2} + 2x + y = 0 \\ (c) \\ x^{2} + 2x + y^{2} = 0 \\ (c) \\ x^{2} + y^{2} + y^{2} = 0 \\ (c) \\ x^{2} + y^{2} = 0 \\ (c) \\ x^{$$

۹,

$$\frac{\partial b}{\partial z} = \frac{\partial a}{\partial z} =$$

$$= \frac{1}{2} \frac{4}{\sqrt{2}} \frac{3}{\sqrt{2}} = \frac{1}{2} \frac{4}{\sqrt{4} - x^{2}} \frac{4}{\sqrt{4} - x^{2}} \frac{3}{\sqrt{2}} \frac{3}{\sqrt{2}} = \frac{1}{2} \frac{4}{\sqrt{4} - x^{2}} \frac{x^{2}}{\sqrt{2}} \frac{3}{\sqrt{2}} \frac{3}{\sqrt{2}} = \frac{1}{\sqrt{4} - x^{2}} \frac{x^{2}}{\sqrt{2}} \frac{3}{\sqrt{2}} \frac{3$$

a!

•

$$\begin{split} \hat{\mathbf{x}} \hat{\mathbf{y}} (\omega) (\omega) \mathbf{T}_{\mathbf{n}} &= \int_{-\infty}^{1} |\omega^{n} e^{-\mathbf{x}} d\omega e^{-\mathbf{x}}$$